





# **ABOUT THIS COURSE**



## PART 1

- Bias
- Fairness



### PART 2

- · RAI Definitions
- ·XAI



## PART 3

- Regulations
- Standards
- Guidelines



# SETTING EXPECTATIONS



### FIRST STEPS

RAI deployment is a progressive and evolving practice



## **FREE RESOURCES**

Open source and freely available tools



# **ONGOING JOURNEY**

Continuous effort is required to remain ethical and effective



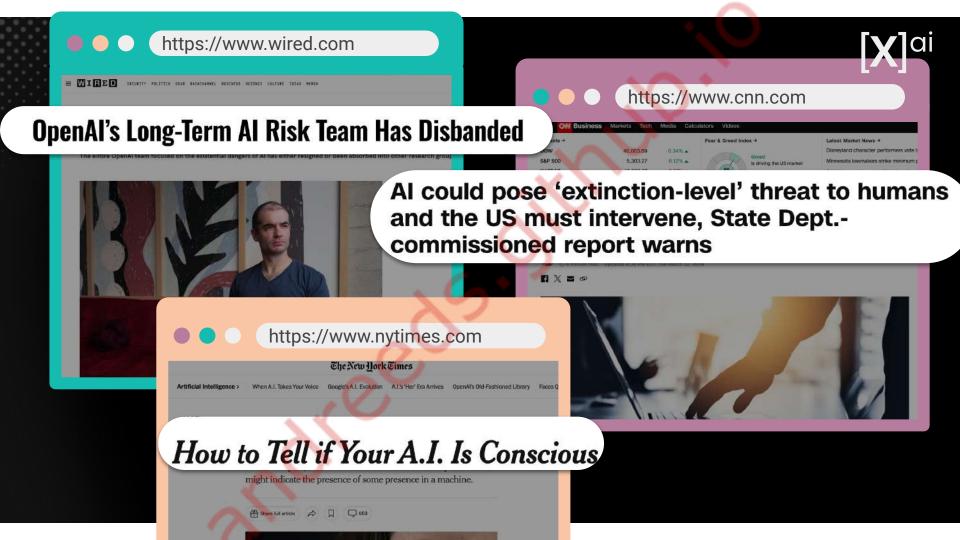
### **NO ONE-SIZE-FITS-ALL**

RAI solutions are highly domain dependent

# PART 1

**Bias & Fairness** 











**Artificial Intelligence** 

**Machine Learning** 

**Deep Learning** 

**Generative Al** 

ARTIFICIAL INTELLIGENCE

# This new data poisoning tool lets artists fight back against generative Al

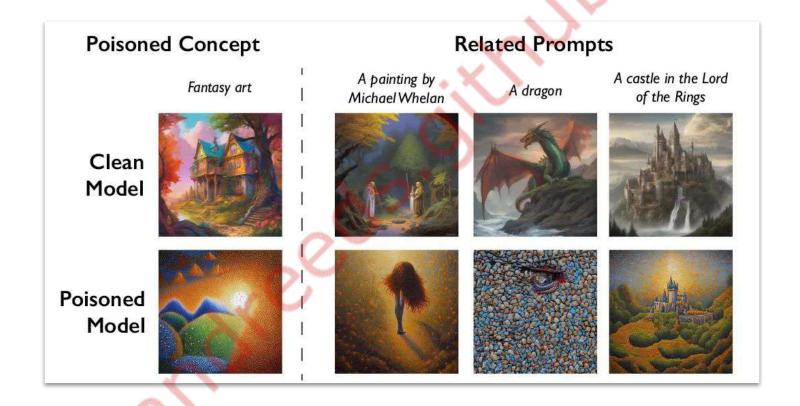
The tool, called Nightshade, messes up training data in ways that could cause serious damage to image-generating Al models.

By Melissa Heikkilä

October 23, 2023



# **NIGHTSHADE**







"Al bias is the phenomenon that occurs when an Al algorithm produces results that are systemically prejudiced due to erroneous assumptions in the machine learning process."

—The Internet



Al bias is any systematic error that results in an unfair model

# BIAS IN AI

# DATA AGGREGATION

MODEL BUILDING & IMPLEMENTATION





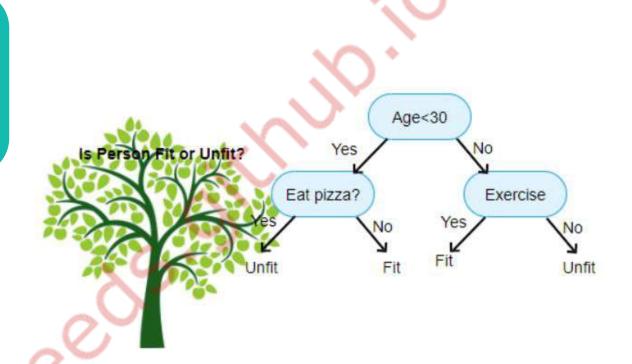






# **BIAS IN AI**

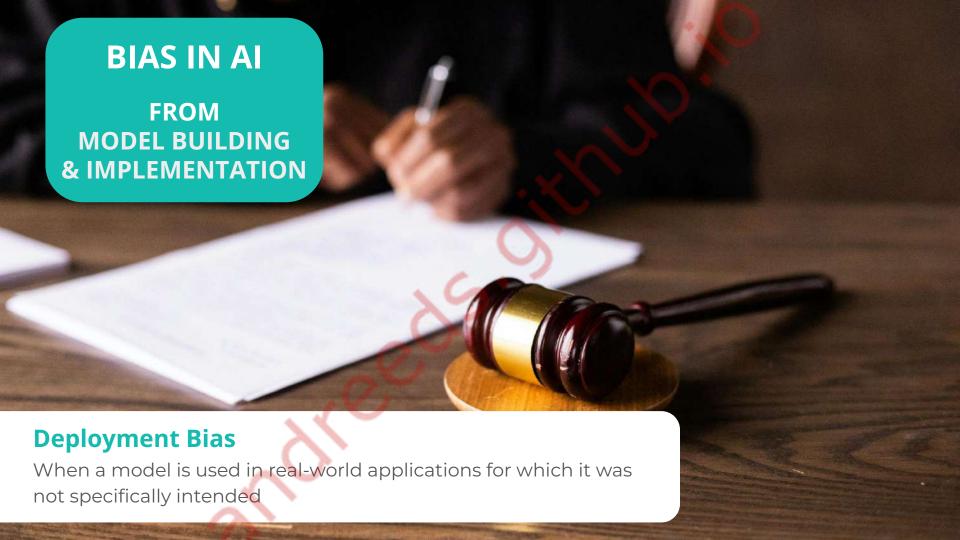
FROM
MODEL BUILDING
& IMPLEMENTATION



# **Learning Bias**

When the choice of ML algorithms and their settings may not treat all groups in the data equally









# FAIRNESS METRICS

"Everyone agrees that fairness involves treating equal persons equally, and unequal persons unequally, but they do not agree on the standard by which to judge individuals as being equally (or unequally) worthy or deserving."

-Aristotle



# INTRO TO ALGORITHMIC FAIRNESS



# **Type of Fairness**

Within the context of an AI/ML model used for classification



## Classification

One type of AI/ML task



## **Fairness Metrics**

Quantitative measures used to assess the fairness of Al models



### **Pure Math**

Understanding the nuances of fairness metrics is essential



# **BASIC FAIRNESS METRIC TERMINOLOGY**



## **Sensitive attribute**

Attribute needing special ethical, legal, or social consideration



# **Proxy Attribute**

Attribute correlated with a sensitive attribute



# **Parity**

Observational measure ensuring metrics are independent of defined groups



## **Confusion Matrix**

Tool measuring accuracy in predictions



# **CONFUSION METRIC**

|                      |                              | True condition                                                                                                                                            |                                                                                                 |                                                                                               |                                                                                                                                                                                 |                                                                  |
|----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                      | Total population             | Condition positive                                                                                                                                        | Condition negative                                                                              | $= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$                 | ΣTrue                                                                                                                                                                           | curacy (ACC) = e positive + Σ True negative otal population      |
| redicted<br>ondition | Predicted condition positive | True positive                                                                                                                                             | False positive,<br>Type I error                                                                 | Positive predictive value (PPV).  Precision =  Σ True positive Σ Predicted condition positive | False discovery rate (FDR) =  Σ False positive  Σ Predicted condition positive                                                                                                  |                                                                  |
|                      | Predicted condition negative | False negative,<br>Type II error                                                                                                                          | True negative                                                                                   | False omission rate (FOR) = Σ False negative Σ Predicted condition negative                   | $\frac{\text{Negative predictive value (NPV)}}{\Sigma \text{ True negative}} = \frac{\Sigma \text{ Predicted condition negative}}{\Sigma \text{ Predicted condition negative}}$ |                                                                  |
|                      |                              | True positive rate (TPR), Recall, Sensitivity, probability of detection, Power $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ | Fall-out.                                                                                       | Positive likelihood ratio (LR+)                                                               | Diagnostic<br>odds ratio<br>(DOR)<br>= LR+                                                                                                                                      | F <sub>1</sub> score = 2 · Precision · Recall Precision + Recall |
|                      |                              | False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$                                          | Specificity (SPC), Selectivity, True negative rate (TNR) = Σ True negative Σ Condition negative | Negative likelihood ratio (LR-) = FNR TNR                                                     |                                                                                                                                                                                 |                                                                  |



#### What-If Tool demo - two binary classifiers for predicting salary of over \$50k - UCI census income dataset Datapoint editor Performance & Fairness Features ~ Explore overall performance ① Configure Ground Truth Feature WHAT IS GROUND TRUTH?

False positive rate

The feature that your model is trying to

The cost of false positives relative to false negatives. Required for optimization. More.

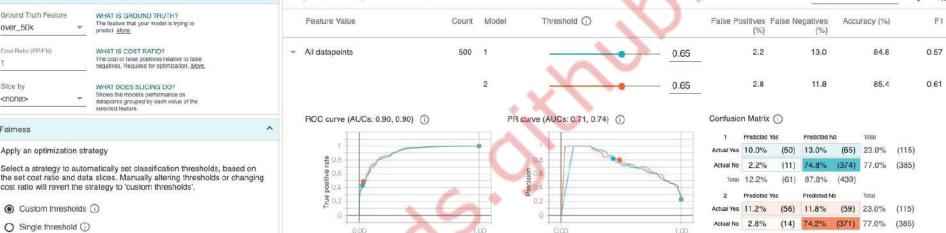
datapoints grouped by each value of the

WHAT IS COST RATIO?

WHAT DOES SLICING DO? Shows the model's performance on

predict. More.

cost ratio will revert the strategy to 'custom thresholds'.



Recall

500 datapoints loaded

Sort by

Count



over\_50k

Slice by

<none>

Faimess

Apply an optimization strategy

Custom thresholds (i)

O Demographic parity (1)

O Equal opportunity (1) O Equal accuracy (1) O Group thresholds (i)

O Single threshold (1)

Cost Ratio (FP/FN)

# **FAIRNESS METRICS EXAMPLES**



#### **UNAWARENESS**

Ignoring sensitive attributes to achieve fairness in decisions



Equal decision rates across groups regardless of outcome



# EQUAL OPPORTUNITY & EQUALIZED ODDS

Fairness through equal true positive rates and error rates across groups



# PREDICTIVE VALUE PARITY

Equal predictive accuracy across different groups



Similar treatment for individuals with similar attributes.

#### Simulating loan decisions for different groups

Drag the black threshold bars left or right to change the cut-offs for loans. Click on different preset loan strategies.

### Loan Strategy

#### Maximize profit with:



#### **GROUP UNAWARE**

Blue and orange thresholds are the same

#### DEMOGRAPHIC PARITY

Same fractions blue / orange loans



Same fractions blue / orange loans to people who can pay them off

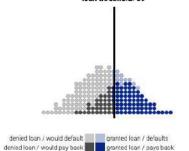
#### **Equal Opportunity**

Among people who would pay back a loan, blue and orange groups do equally well. This choice is almost as profitable as demographic parity, and about as many people get loans overall.



#### Blue Population





#### Total profit = 30400

#### Correct 78%

loans granted to paying applicants and denied to defaulters



#### Incorrect 22%

loans denied to paying applicants and granted to defaulters



## True Positive Rate 68%

applications getting loans

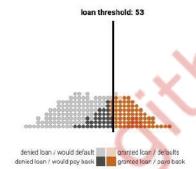


#### Positive Rate 40%

percentage of all applications getting loans



#### Orange Population



#### Correct 83%

loans granted to paying applicants and denied to defaulters



#### Incorrect 17%

loans denied to paying applicants and granted to defaulters



#### True Positive Rate 68% applications getting loans

#### Positive Rate 35%

percentage of all applications getting loans



Profit: 18700



# **OPEN SOURCE LIBRARIES**

Here are a few common open-source libraries and tools on Al Fairness:

## AIF360 [Python/R]

- ☐ IBM Research
- ☐ Last update: 1 month ago
- Bias mitigation algorithms
- Fairness metrics
- Video tutorial

## Aequitas [Python]

- Carnegie Mellon University
- ☐ Last update: 2 weeks ago
- Complete Toolkit
- Complete Documentation Notebook Examples
- Aequitas's license does not allow commercial use.

# Fairlearn [Python]

- Microsoft, now community driven
- ☐ Last update: 1 week ago
- Bias mitigation algorithms
- ☐ Fairness metrics
- ☐ Complete Documentation Notebook Examples

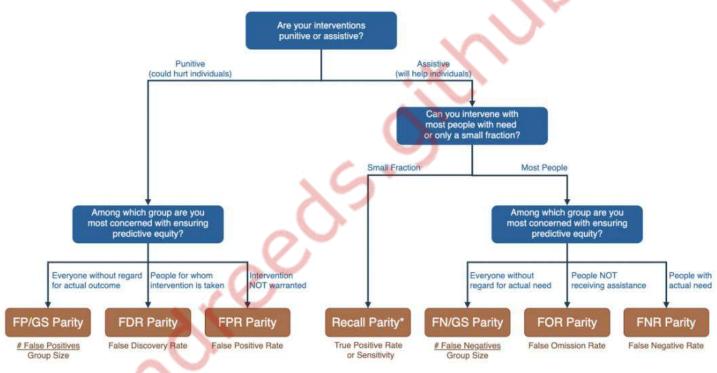
## VerifyML [Python]

- Cylynx
- Winner Global Veritas Challenge
- ☐ Complete Toolkit
- ☐ Last update: 2 years ago
- Code Demo



Fairness-Short-Tree

# FAIRNESS TREE (Zoomed in)





Source: Aequitas





## Bias and Fairness Audit Toolkit

The Bias Report is powered by Aequitas, an open-source bias audit toolkit for machine learning developers, analysts, and policymakers to audit machine learning models for discrimination and bias, and make informed and equitable decisions around developing and deploying predictive risk-assessment tools.



See an example report on COMPAS risk assessment scores.

Or try out the audit tool using your own data or one of our sample data sets.

Get Started!

© 2018 Center for Data Science and Public Policy - University of Chicago



# PART 2

Responsible Al





# RESPONSIBLE AI DEFINITIONS

Whats is the difference between Understandability, Interpretability, Comprehensibility, Explainability, and Transparency?



# RESPONSIBLE AI KEY CONCEPTS





What?

How?



Why? When? Who? Which?



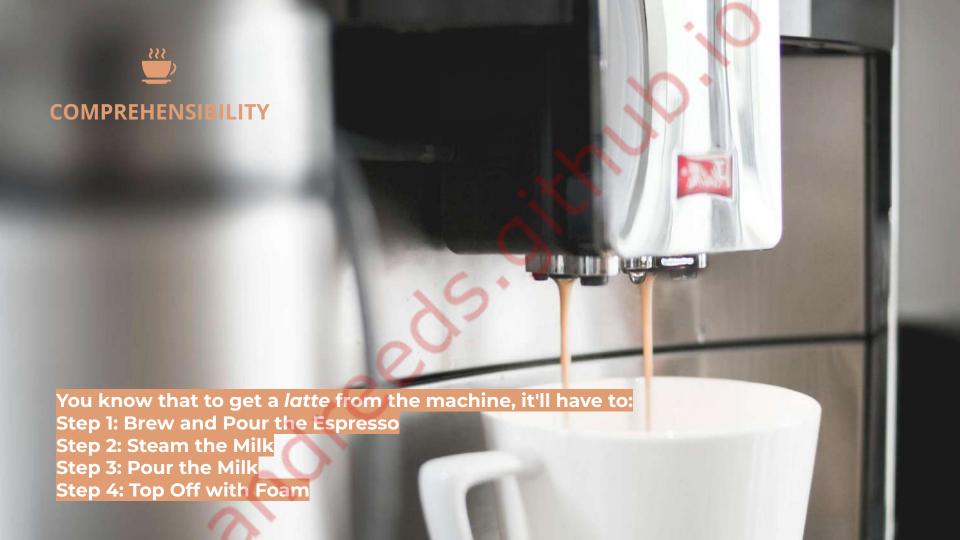
### **EXPLAINABILITY**

Why? What? Who? When? How? Which?



No questions needed.









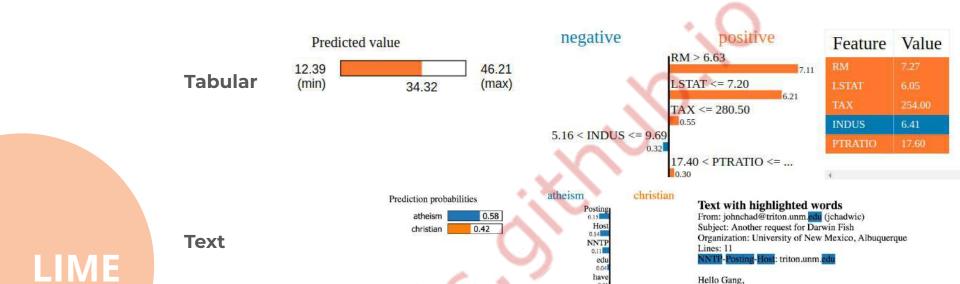
Step 3: Pour the steamed milk over the espresso, using a spoon to hold back the foam.

Step 4: Top off the drink with the reserved foam

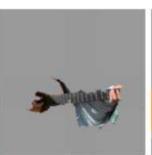




# XAI METHODS







0.01 There



DARWIN fish.



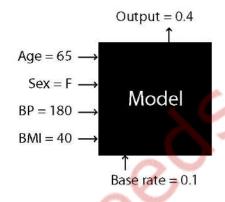
here have been some notes recently asking where to obtain the

This is the same question I have and I have not seen an answer on net. If anyone has a contact please post on the net or email me.

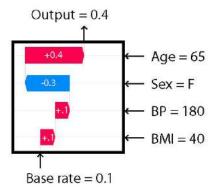




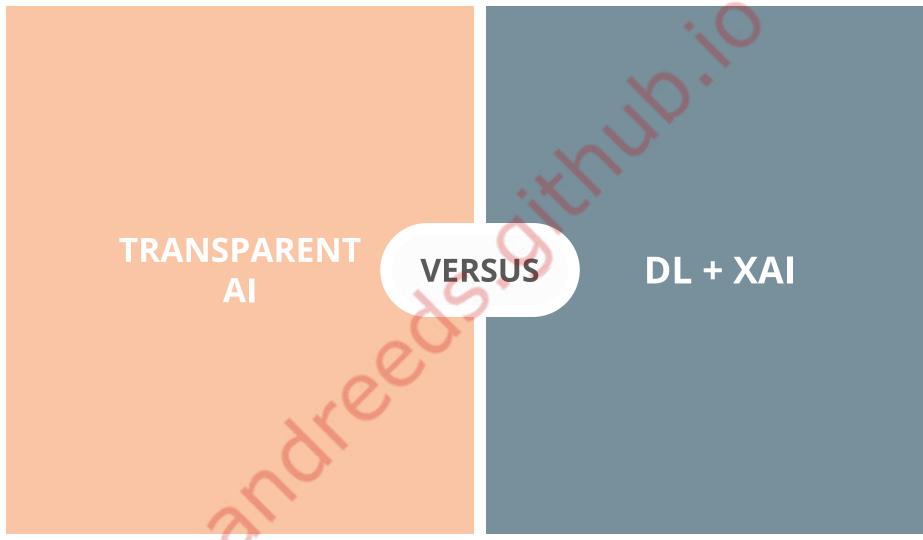




Explanation













# PART 3

Al Regulations, Standards & Guidelines









#### United Kingom

Legislation & regulation: Online Safety Bill (2022, draft); Data Protection and Digital Information Bill (2023, draft)

Standards: Algorithmic Transparency Standard (Central Digital Data Office.

Principles: A pro-innovation approach to Al regulation (2023)

#### Canada

Legislation & regulation: Directive on Automated Decision-Making (2019) Bill C-27; Digital Charter Implementation Act, including AI and Data Act (AIDA) (2022, draft) Standards: CAN-ASC-6.2: Accessible and Equitable Al Systems (2023, draft) Principles: Canada's Digital Charter

Oversight: Minister: Proposed Al and Data Commissioner

#### **European Union**

Legislation & regulation: Proposed EU Al Act (2021, draft); Updates to the EU Product Liability Directive (2022, draft); Al Liability Directive (2022, draft); EU's Digital Services Act Standards: CEN/CENELEC standards for Al and related data (forthcoming)

Principles: Ethics guidelines on Al (2018)

Oversight: Proposed European Artificial

Intelligence Board

#### **United States**

Legislation & regulation: Federal Trade Commission Act, for deceptive practices from deepfakes or chatbots (1914);

Algorithmic Accountability Act (US AAA) (2022, draft) Standards: NIST AI Risk Management

Framework (2023)

Principles: Blueprint for an Al Bill of Rights

(2023



#### China

Legislation & regulation: Chinese Internet Information Service Algorithmic Recommendation Provisions (2021): Opinion on Strengthening the Ethics and Governance of Science and Technology (2022)

Standards: National Standards for Autonomous Vehicle Testing (2018)

Principles: New Generation Al Ethics Specifications (2019); New Generation Al Code of Ethics (2021); White Paper on Trustworthy Al (2021): Internet Information Service Algorithmic Recommendation Management Provisions (2021)



(2022, draft)

Legislation & regulation: Report and proposed substitute text for draft bills 5051/2019, 21/2020 and 872/2021 (2022, draft); Bill 705 on the compatibility of AI use in the public sector with ESG practices (2022, draft) Standards: Incorporation of international

standards National standards by the Brazilian Association of Technical Norms (ABNT) Principles: Art. 3 of the proposed substitute text for draft bills 5051/2019, 21/2020 and 872/2021



#### Intergovernmental Organisations



Legislation & regulation: Council of Europe Convention on Al, Human Rights, Democracy and the Rule of Law (2023, draft) Standards: ISO 31000 Risk management (2009, 2018); ISO/IEC 23053:2022 Framework for AI Systems Using Machine Learning (ML)

Principles: OECD Recommendation of the Council on Al (2019): UNESCO Recommendation on the Ethics of AI (2021)

#### LINKS









# AI ACT

Al systems are broadly defined, with a focus on autonomy.

Key takeaways

- Risk-Based Approach
- Banned Practices
- Transparency Obligations
- Market Surveillance

# **CANADA**





# **BILL C-27**

Bill comprised of three acts, one is the Al & Data Act (AIDA)

- Committee Stage
- Government institutions excluded
- Two purposes: regulate trade and prohibit harm
- Prevention of biased outputs
- High impact system not clear
- Minister of Innovation Powers



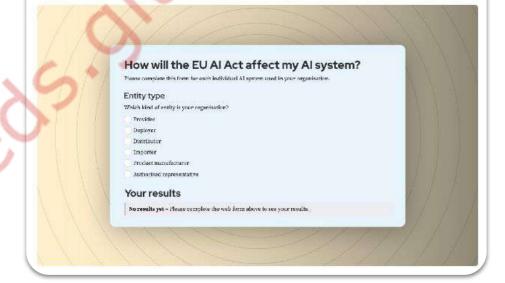
# GUIDELINES



# EU AI ACT COMPLIANCE CHECKER

# Compliance Checker

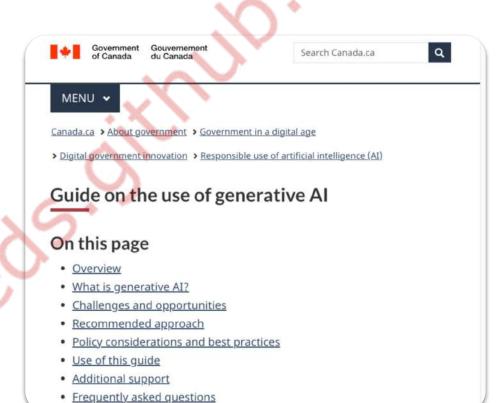
Discover how the AI Act will affect you in 10 minutes by answering a series of straightforward questions.







# GOVERNMENT OF CANADA'S GUIDE ON THE USE OF GENERATIVE AI







# ALGORITHMIC IMPACT ASSESSMENT TOOL





# OECD FRAMEWORK FOR THE CLASSIFICATION OF AI SYSTEMS

OECD DIGITAL ECONOMY PAPERS

February 2022 No. 323

#### DATA & INPUT

#### - Provenance, collection, dynamic nature - Structure and format (structured etc.) - Rights and 'identifiability' (personal data on, proprietary etc.)

Al actors include data collectors & processors

- Appropriateness and quality

## ECONOMIC CONTEXT

- Industrial sector - Business function & model - Critical function - Scale & maturity

actors include system operato

#### PEOPLE & PLANET

Figure 2. Characteristics per classification dimension and key actor(s) involved

- Impacted stakeholders
- Optionality & redress
- Human rights, incl. privac
- Well-being & environmen

Actors include end-users & stakeholders

#### AI MODEL

Model characteristics
 Model building
(symbolic, machine
learning, hybrid)
 Model inferencing / use

Al actors include develo

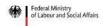
#### TASK & OUTPUT

System task (recognise; personalise etc)
System action (autonomy level)
Combining tasks and action
Core application areas (computer vision etc)

At actors include system integrators

Note: Actors are illustrative, non-exhaustive and notably relevant to accountability. Source: Based on the work of ONE AI and the AI system lifecycle work of AIGO (OECD, 2019fizi).





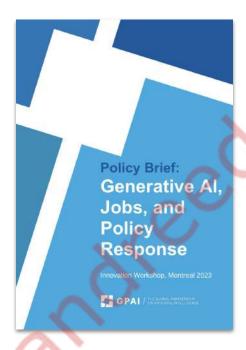






# GPAI / THE GLOBAL PARTNERSHIP ON ARTIFICIAL INTELLIGENCE

HOME **ABOUT** COMMUNITY -**OUR WORK -EVENTS** 



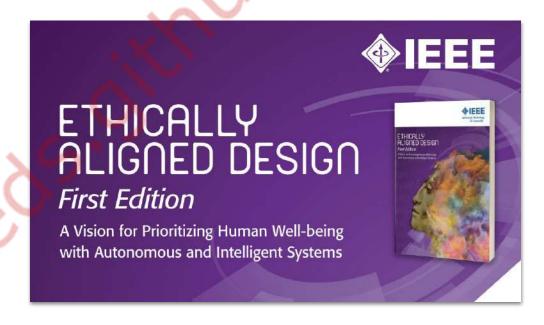








ETHICALLY
ALIGNED DESIGN







Digital Governance Standards Institute

# AND USE OF AUTOMATED DECISION SYSTEMS



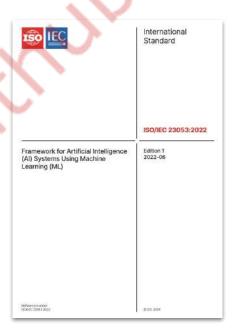
Ethical Design and Use of Automated Decisions Systems

CAN/CIOSC 101:2019 (Reaffirmed 2021-10)





FRAMEWORK
FOR AI SYSTEMS
USING ML







# **CONCLUSION**



# PART 1

- Bias
- Fairness



#### PART 2

- · RAI Definitions
- ·XAI



# PART 3

- Regulations
- Standards
- Guidelines





# **MORE ESSENTIALS**



### **PRIVACY**

Adversarial attacks



### **CAUSALITY**

Correlation is not necessarily causation



# AI & PEOPLE

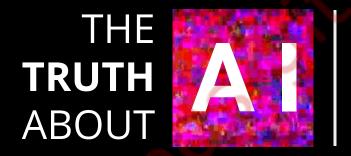
How Al affects and is perceived by people



### **FRAMEWORKS**

Ethics charter





Separating Fact from Fiction

by Dr. André dos **Santos** 

We gratefully acknowledge support



#### Computer Science > Machine Learning

[Submitted on 6 Apr 2023 (v1), last revised 29 Oct 2023 (this version, v3)]

Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models 0.5 L / 10-50 queries

Pengfei Li, Jianyi Yang, Mohammad A. Islam, Shaolei Ren

The growing carbon footprint of artificial intelligence (AI) models, especially large ones such as GPT-3, has been undergoing public scrutiny. Unfortunately, however, the equally important and enormous water (withdrawal and consumption) footprint of Al models has remained under the radar. For example, training GPT-3 in Microsoft's state-of-the-art U.S. data centers can directly evaporate 700,000 liters of clean freshwater, but such information has been kept a secret. More critically, the global AI demand may be accountable for 4.2 -- 6.6 billion cubic meters of water withdrawal in 2027, which is more than the total annual water

withdrawal of 4 -- 6 Denmark or ha the most pressing challenges share aging water infrastructures. To rest and lead by example by addressing water footprint of AI models, and al Finally, we highlight the necessity o

Comments: New updates include discussion footprint based on Microsoft's Subjects Machine Learning (cs.LG); Arti arXiv:2304.03271 [cs.LG] Cite as: (or arXiv:2304.03271v3 [cs.LG]

Submission history

From: Shaolei Ren [view email]

[v1] Thu, 6 Apr 2023 17:55:27 UTC (2,820 KB) [v2] Wed, 25 Oct 2023 07:56:21 UTC (232 KB)

https://doi.org/10.48550/arXiv

**On-site Water** Cooling 1 Chiller Heat Off-site Water Cooling Tower Warm Chilled Water Water Power Meta ChatGPT AlphaGO Water Source Data Center

- Semantic >

**Export BibTeX Citation** 

Bookmark XO





PROFESSIONAL DEVELOPMENT

**AI EXPLAINED** 

**AI SAFETY** 

**AI LEADERSHIP** 

EXPERTS NETWORKING

**AI CONSULTING** 



